News of the month

Next | End

First energetic protons at SAPHIR

Edited: 2014/03/27

First energetic protons at SAPHIR -

SAPHIR project aims at determining the technical and economical viability of laser protons therapy, as an alternative to the classical particle acceleration technics for curing cancer. The final goal of this project is to realize a compact and affordable system to be installed directly in hospitals, thus spreading the use of this treatment.

5 laboratories and French institutions (LOA , CPO / Institut Curie , Institut Gustave Roussy , CEA DAM / LIRM IRAMIS and CEA Saclay ) and 4 industrial partners (Amplitude Technologies, Dosisoft , Imagine Optic and Propulse SAS) are involved in SAPHIR. This interdisciplinary project connects physics, biology , oncology, and is largely devoted to technology transfer from basic research to industry.

The experimental system is installed on the site of the LOA at Palaiseau. It has recently been commissioned and the first energetic protons were produced to validate the experimental setup. 5 MeV protons have been generated with a laser energy of about 3J on target and a pulse length of 40 fs. The upgrade of the laser power will allow to study the parameters for efficient production of protons of several hundred MeVs.

Image Caption : Thomson parabola data showing accelerated protons from a solid target
( 6 microns thick) and four traces of carbon ions ( C +, C4 + ) .

ERC Senior Grant awarded at LOA

Edited: 2013/07/23

 Victor Malka, head of the research group SPL at LOA has been awarded the prestigious 2013 European ERC grant. The objective of the so called X-5 project is to demonstrate the feasibility of the 5th generation of high energy radiation sources, which are expected to be compact, to lower the costs, and to meet the growing demand of the scientific community. These novel sources will be produced using laser-based high-energy electron accelerators coupled to magnetic permanent magnet undulators or plasma wigglers. The project includes a strong collaboration with teams from the Synchrotron SOLEIL. This is the 4th ERC grant awarded to LOA teams.

ERC Advanced Grants allow exceptional established research leaders of any nationality and any age to pursue ground-breaking, high-risk projects that open new directions in their respective research fields or other domains.
The ERC Advanced Grant funding targets researchers who have already established themselves as independent research leaders in their own right.

The upgraded Salle Jaune Laser shines again

Edited: 2013/06/18

 After 1 year and a half break and an intense work of the technical support and researchers teams to carry out a huge upgrade program, the LOA laser Facility "Salle Jaune" and the related experimental sites have just done their first shots on target.

First experiments of laser-matter interaction have been performed successfully on the acceleration of energetic electrons (image: 3 electron spectra around 400 MeV from 3 consecutive laser shots) and the generation of ultrashort X-rays. It is remarkable that these first results were obtained only a few minutes after re-focusing the laser on target for the first time since the stop of the facility 18 months ago, indicating a very high quality of the laser beam properties and of the interaction parameters.

The laser now delivers a power of 120 TW on target splitted on multiple beams. Three fully equiped experimental sites are now available to perform complex plasma physics experiments thanks to the multiple beams spatially and temporally synchronized.

This project was funded by ENSTA, Ecole Polytechnique, CNRS and numerous contracts including a ERC European project and few ANR programs from the french Ministery of Research.

Rainbow pattern from laser-plasmas

Edited: 2013/03/13

 Intense light pulses that can precisely sculpt solid materials also generate dazzling rainbow patterns that reveal information about the surface.

Not just a pretty face. This colorful pattern of light scattered from a solid surface being hit with laser pulses can convey details of the surface damage, such as the size of the laser-generated crater.

A spectacular sunburst of colored light produced as a laser beam bores into a solid surface could reveal information about the damage the light causes, according to a report in Physical Review Letters. The authors observed the rainbow pattern as they blasted a series of transparent materials such as glass and quartz with intense laser pulses. The team says that this effect, surprisingly overlooked until now, could offer a way of monitoring laser ablation, a technique used in fields as varied as dental surgery and art preservation.

Reference:

American Physical Society - Physics

- Ciliary White Light: Optical Aspect of Ultrashort Laser Ablation on Transparent Dielectrics
Yi Liu, Yohann Brelet, Zhanbing He, Linwei Yu, Sergey Mitryukovskiy, Aurélien Houard, Benjamin Forestier, Arnaud Couairon, and André Mysyrowicz
Phys. Rev. Lett. 110, 097601 (2013)

Improved stability of laser-plasma electron beam

Edited: 2013/02/07

Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the ac- celerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Researchers from LOA have demonstrated the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal in- jection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams. These results are published in Nature Communications, February 19th, 2013.

 

Attosecond lighthouse

Edited: 2012/12/18

Nature Photonics, December 2012 - The dynamics of electrons in atoms and molecules is extremely fast (order of magnitude: attosecond, or 10-18 s). One way to study these phenomena is to use pulses of ultra-short light on these timescales. With the demonstration carried out at the Laboratory of Applied Optics (LOA, CNRS / ENSTA-ParisTech / Polytechnique) by researchers from LOA and  CEA-IRAMIS, it is possible to have today unique light sources. From a single laser pulse focused onto a plasma, several isolated attosecond pulses can be produced. The beams are well angularly separated and perfectly synchronized. The attosecond "lighthouse" is an ideal light source for future pump-probe experiments to study the ultrafast dynamics of electron in matter.

 These results were published in Nature Photonics, 1 December 2012.

Read the news

New LaserLab coordinator

Edited: 2012/11/05

 Claes-Göran Wahlström from the Lund Laser Centre at Lund University, Sweden, has been elected as the new Coordinator of LASERLAB-EUROPE, the European Laser consortium.  He succeeds Wolfgang Sandner, Max-Born-Institute, Berlin, who lead the consortium and its evolution through several successive Framework Programmes of the EU, starting with the FP5 thematic network LASERNET in 2001. Meanwhile the consortium has grown to 28 partner institutions, comprising, together with subcontractors, 19 European countries. It has just started a new project period, funded by the European Union and ranging from 2012 through 2015.
Claes-Göran Wahlström is Professor of Physics at the Lund University, where he is the head of the Atomic Physics Division, at the Department of Physics, and of the Lund Laser Centre. His own research addresses ultra-high intensity laser matter interactions, and laser-driven particle acceleration in particular. Since 2010 he is an elected member of the Royal Swedish Academy of Sciences.
The hand-over took place during the General Assembly Meeting in Munich on October 25. In his inauguration speech, Claes-Göran Wahlström thanked Wolfgang Sandner for his achievements, having brought together two laser communities, the former “high-energy laser infrastructures” and the “analytical laser facilities”, and having led them to become a powerful network. He also pointed out the options for the further development of the consortium and his commitment to lead LASERLAB-EUROPE into a successful and sustainable future.
The LASERLAB-EUROPE partners congratulate Claes-Göran Wahlström to his election and wish him all the best for the future coordination of the LASERLAB network. They also thanked Wolfgang Sandner who will assume new tasks in the European ESFRI project ELI, the “Extreme Light Infrastructure”, the world’s first international scientific laser project. Claes- Göran Wahlström will be assisted in his new tasks by the Forschungsverbund Berlin e.V., the legal entity holding the LASERLAB grant agreement with the EC, and by the LASERLAB Berlin office, who both will continue in their functions.

LOA belongs to the consortium since its start more than 10 years ago. It plays an active role in the research and access facility  programs as well as in the coordination of the consortium with its recent election at the Management Board. 

ENSTA-ParisTech moves to Palaiseau

Edited: 2012/10/08

The french National School of Advanced Techniques (ENSTA ParisTech) has just moved this september from Paris to Palaiseau. ENSTA ParisTech was located in Paris since its creation in 1970. In 2012, the school of engineering is moving on the Paris-Saclay Campus, located on the Saclay plateau. The new campus provides teaching facilities, student accommodations, catering and hotel services and a range of outstanding sporting facilities for the people who live, work and study there. Saturday, October 6, 2012, a first event has gathered around 1000 people came to visit the new school in a friendly and musical atmosphere. The official inauguration took place Saturday, October 13, 2012.

ERC "starting Grant award at LOA

Edited: 2012/06/25

 Jerôme FAURE, a CNRS staff researcher at LOA, has been awarded a junior European ERC starting grant  (June 2012). This highly selective program favors the emergence of the next-generation of research leaders, who bring new ideas, and it encourages highly talented researchers at an early stage of their career to seek advancement. ERC Starting Grants aim to support up-and-coming research leaders who are about to establish or consolidate a proper research team and to start conducting independent research.

Jérôme FAURE will develop innovative femtosecond laser-plasma based electron source at high repetition rates to study the ultrafast structures of the matter. His research program will be done with the latest LOA laser infrastructures.

 

Attached document ]

LOA results highlighted

Edited: 2012/05/02

 Two scientific results of the Laboratoire d'Optique Appliqée (LOA) are highlighted in the May 2012 covers of Nature Physics and Nature Photonics. These two results on the attosecond control of plasma and on the generation of all-optical gamma-ray beam by Compton scattering, were obtained by three teams of the laboratory, FLEX (X-ray source development and application), SPL (Particle source development and application) and PCO (Physics of optical cycle) and using two LOA experimental facilities, the "Salle Jaune" infrastructure (30 TW femtosecond laser) and the "Salle Noire" infrastructure (ultrafast laser of a few optical cycles and controlled in phase). More details can be found following the links:

 

-Attosecond Control of plasmas-

http://www.nature.com/nphys/index.html

http://loa.ensta-paristech.fr/specialnews.php 

 

-All Optical gamma-ray beam-

http://www.nature.com/nphoton/index.html

 http://loa.ensta-paristech.fr/news.php  

News & Views article as well an interview related to the All Optical gamma ray beam experiment are also available. 

print White background, black text Français